

CNS/ATM Seminar/Workshop Institutional & Economic Considerations

Global Positioning System (GPS) Institutional Considerations

David S. Burkholder

International Research and Acquisitions Division U.S. Federal Aviation Administration

October 2002

1

Overview

- CNS/ATM Concept Review
- GPS Today
- GPS Augmentation Status (WAAS/LAAS)
- Aspects and Considerations of a Satellite Navigation Implementation Effort
- Regional Cooperation in Support of Institutional Aspects
- Summary and Additional Information

CNS/ATMConcept Review

- Communications, Navigation and Surveillance (CNS)
- Technologies Include, but not Limited to:
 - GPS/GNSS and its Augmentations (GPS/WAAS/LAAS)
 - Aeronautical Data Link (CPDLC)
 - Automatic Dependent Surveillance (ADS-B)
- Enhance and Modernize Aging and Out-Dated Regional and Global Air Traffic Management Systems of Today to:
 - Transcend National Boundaries;
 - Support Future Domestic and International System Demands;
 - Permit Worldwide System Compatibility and Interoperability;
 - Support a Cohesion of ATM Operating Environments; and
 - Provide Greater System Safety & Efficiency for the Public.

GPS Today

Global Positioning System (GPS)

Why Satellite-Based Navigation?

- Improved Aviation System Safety
- Fewer Disruptions
- Increased Capacity

- Increased Fuel Savings
- Low Operations Costs
- Low Avionics Cost

Juneau, Alaska

Runway 8 IFR Arrival: 1000+ Feet and 2+ Miles Runway 26 IFR Arrival: None

Kodiak & Sitka, Alaska

GPS Current International Capability

- Benefits of the basic GPS service are attainable today and can provide enormous benefits for very little investment.
- Any nation can fully utilize GPS today through the following steps:
 - Complete WGS-84 surveys including obstacle clearance data
 - Approve GPS as a supplemental or primary navigation aid
 - Develop, validate, and publish GPS approaches
 - Equip aircraft with properly certified GPS receivers
- By taking these steps in the near-term, countries will allow for a quicker and more efficient transition to GPS augmentation services in the future

GPS Background

- Active Program for Over 25 Years
- Operational Satellites Began Launch in 1989
 - Initial Operational Capability: 1993
 - Full Operational Capability: 1995
- Open Civil Navigation Service
 - Available for use NOW and has WORLDWIDE coverage
 - Multiple transportation & civil applications
 - Cost effective resource for areas with limited air navigation capabilities
 - U.S. Policy since 1983 to provide GPS signals to civil users worldwide free of direct user fees.
 - There are no plans to change this policy
 - Managed by the Interagency GPS Executive Board (IGEB)

Interagency GPS Executive Board (IGEB)

Transportation (co-chair)

Commerce

State

Interior

Agriculture

Joint Chiefs of Staff

Justice

NASA

GPS Standard Positioning Service (SPS) Performance Standard

- Defines the levels of performance the U.S.
 Government commits to provide to domestic and international civil GPS users
- Not a requirements document
- It is a "GPS Service Commitment"
- Current edition published October 2001
 - Updated performance as a result of discontinuing Selective Availability

GPS Performance Standard Metrics

GPS Performance Standard Metric	2 nd Edition SPS Signal Specification June 1995	SPS Performance Standard October 2001	Representative Performance
Global Accuracy			
All-in-View Horizontal 95%	100 meters	13 meters	4 meters
All-in-View Vertical 95%	156 meters	22 meters	6 meters
Worst Site Accuracy			
All-in-View Horizontal 95%	100 meters	36 meters	6 meters
All-in-View Vertical 95%	156 meters	77 meters	10 meters
Time Transfer Accuracy			
All-in-View Time Transfer	340 nanoseconds	40 nanoseconds	7-10 nanoseconds
User Solution 95%			
Constellation RMS User	NONE	6 meters	1.6 meters
Range Error			
Geometry (PDOP ≤ 6)	95.87% global	98% global	99.9% global
,	83.92% site	88% site	98% site
Constellation Availability	NONE	95% Probability of 24	25-28 Healthy
		Operational Satellites	Satellites
Service Reliability	99.97% global	99.94% global	100% global
•	99.79% worst site	99.79% worst site	100% worst site
Service Failure Threshold	500 m Horizontal Error	30 m SIS URE	(28 July 2001
Service Failure Rate	3/Year	3/Year	PRN22 Failure
Service Failure Duration	Up to 6 Hours/Failure	Up to 6 Hours/Failure	almost 2 hours of
			URE > 30 m

GPS Augmentations Status (WAAS/LAAS)

GNSS Augmentations

Satellite Based Augmentation Systems (SBAS) (Wide Area Augmentation System)

- Averages GPS Corrections Over a Large Area (Region)
- More Reference Stations Equates to Better Error Averaging (More Precise Service Capability)
- Provides Correction Signal Via GEO Satellites

Ground Based Augmentation System (GBAS) (Local Area Augmentation System)

- Corrects GPS Inaccuracies for Smaller Areas (Terminal)
- Provides Precision Approach Capability Including "Zero" Visibility Landings (CAT-IIIb)
- Provides GPS Error Corrections Directly to Aircraft

WAAS Development Initial IFR

- Will Provide IFR Service To Large Portions Of U.S. National Airspace System
 - HAL 40 Meters*
 - VAL 50 Meters*
 - Over More Than90% Of CONUS
 - Portions Of AlaskaAnd Caribbean

* Supports
LNAV/VNAV & LPV

WAAS Development Strategy

- WAAS Is Using An Incremental Strategy To Provide Improvements To Users Before And After Initial Delivery
 - Present
 - Develop Procedures (LNAV/VNAV) For Use By WAAS And Other NAS Users
 - WAAS Signal-In-Space For VFR And Other Non-Safety Users
 - Before Commissioning
 - Permit Use Of WAAS Avionics For IFR Use Prior To System Commissioning (En Route – Non-Precision Approach)
 - Commissioning
 - LNAV/VNAV Approach
 - LNAV/VNAV Nominal Minimums 350/1½
 - En Route
 - Departure
 - Within 6 Months of Commissioning
 - Improve Precision Approach Capability To Users Through TERPS Optimization To LPV
 - LPV Nominal Minimums 250/ ½*

* With Lights

WAAS Schedule Overview

SIS Available for Some Aviation and All Non-Aviation Uses Since 24 August 2000

- System Operating 24 hours a day / 7 days a week
- 99.99% Availability
- Accuracy:
 - 1 Meter Horizontal
 - 2 Meters Vertical (Nominal)
- WAAS Commissioning (IOC) December 2003

LAAS Development/Acquisition

- Phase I (April 1999 September 2005)
 - Government Industry Partnership (GIP) to Develop Non-Fed CAT-I System Under FAA Type Acceptance (TA) Process (Honeywell, Raytheon, Thales)
- Phase II (September 2002 September 2005)
 - FAA Full-Scale Development (FSD) and Production of Fed CAT I Systems
 - Development of Advanced Procedures
- Phase III (October 2002 September 2004)
 - Research & Development (R&D) to Mitigate Technical Design Risk

LAAS CAT I Program Schedule

RFI (SPEC/Schedule)

Draft RFO

Final RFO

LAAS Business Case

Contract Award

System Development (18-24 Months)

LRIP Deliveries

DT&E (5 Months)

OT&E (5 Months)

IOC (Commissioning)

Production

Proposed Revised Dates

Aspects and Considerations of a Satellite Navigation Implementation Effort

SatNav Implementation

- Technically understand the capabilities
- Operationally understand the capabilities
- Address implementation considerations (Institutional, Technical, Operational)
- Develop a user support base: educate and involve in solutions and applications
- Each country and/or region will have different needs and requirements, and thus solutions

Aspects of a SatNav Transition Effort

Technical

- R&D activities (TESTBED for trials and studies)
- Provide advanced technology familiarization and training
- Outline feasibility studies, capability assessments, and final system architecture
- Determine optimal mix of GNSS technologies (GPS/SBAS/GBAS) to meet current & projected needs
- Determine final configurations for SBAS/GBAS architectures (number and location of reference stations)
- System specification development
- Identify and address potential system interface issues
- Include users to define user requirements

Aspects of a SatNav Transition Effort (cont.)

Operational

- Prepares air traffic control systems for new technology
- Prototypes system performance and reliability
- Gains experience in procedure design and development
- Experience with flight inspection and certification
- Tests prototype avionics prior to operational debut
- Training ground for pilots and controllers
- Development of transition plans for phasing-in new SatNav systems and decommissioning older groundbased navaids

Aspects of a SatNav Transition Effort (cont.)

Institutional

- Establishment of GNSS implementation programs
- Internal government coordination (leverage costs)
- External government coordination
- International coordination and cooperation
- Mission needs determination, including cost benefit analysis, investment analysis, and business cases
- Development of an acquisition strategy, including budget and funding requirements and sources
- Resolves Issues for Consensus for Government Implementation
- Political and legal issues respective to each country

ICAO Regional Project for Latin America RLA/00/009

ICAO Regional Project RLA/00/009 Overview

- Established in <u>GREPECAS Conclusion 8/35</u> Calling for a "Regional GNSS Augmentation Trial (CSTB)"
- UNDP/ICAO Technical Cooperation Project Being Implemented Through a Memorandum of Understanding (MOU) Between the FAA and ICAO
- GNSS Augmentation Test Bed (CSTB) Capability is Based on U.S. WAAS/LAAS Prototype Technologies
- CSTB Architecture Consists of Individual Test Bed Equipment Sets in Brazil, Chile and Panama, and Additional FAA-Provided Equipment Sets in Argentina, Bolivia, Colombia, Honduras (COCESNA), and Peru.

ICAO Regional Project RLA/00/009 Overview (cont.)

- GREPECAS States to Assess Regional Requirements and Determine Regional Solutions
- Develop Technical Expertise in Satellite Navigation and Augmentation Technologies and Systems through participation in Technical Training Provided by the FAA
- Ionosphere Research and Modeling
- After Determining Regional Solutions, GREPECAS States, with Continued FAA Support, to Begin Transition Activities Towards an Operational GNSS System Architecture
- Flight Tests, Data Collection and Analysis to be Conducted by GREPECAS States with FAA Support

ICAO Regional Project RLA/00/009 Objectives

- Address Specific Institutional Issues
 - Establishment of GNSS implementation programs
 - Internal government coordination (leverage costs)
 - External government coordination
 - International coordination and cooperation
- Answer Questions Regarding GNSS Implementation and Operational Use in Latin America and its Member States
- Support Both Individual and Regional Transitions to Operational GNSS Use in Latin America

ICAO Regional Project RLA/00/009 Objectives (cont.)

- Create a Seamless GNSS Navigation Capability
 Throughout Latin America and on Transition Routes
 to North America and Other International Destinations
- Conduct Research and Analyses on Data Sharing and Interoperability Between Independent GNSS Augmentation Systems
- Investigate the Shared Use of SBAS Geostationary Communication Satellites (GEOs)

Summary

- Worldwide Implementation of GPS and Its Augmentation Systems Continues to Grow
- The FAA is Committed to Furthering the Creation of a Single, Global GNSS Architecture (Including SBAS and GBAS Augmentations)
- ICAO Regional GNSS Implementation Projects Continue a Positive Momentum Towards a Global Architecture
- Safety, Efficiency, and Cost Savings Opportunities for all Worldwide Partners in This Effort
- Project already addressing many of the institutional aspects like internal government and international coordination
- Results and experience will provide great benefits to the operational implementation process through lessons-learned

Additional Information

For Additional Information on CNS/ATM Technologies and U.S. Implementation Programs, Please Visit the Following Websites:

GPS Operational Status Information

http://www.navcen.uscg.gov

GPS Performance Standard Specification

http://www.navcen.uscg.gov or http://www.igeb.gov

FAA International Research and Acquisitions Office

http://www.faa.gov/asd/international/

FAA Global Positioning System (GPS) Product Team

http://gps.faa.gov/